24 research outputs found

    Efficient computational mesoscale modeling of concrete under cyclic loading

    Get PDF
    Tesi amb diferents seccions retallades per drets de l'editor.Concrete is a complex material and can be modeled on various spatial and temporal scales. While simulations on coarse scales are practical for engineering applications, a deeper understanding of the material is gained on finer scales. This is at the cost of an increased numerical effort that can be reduced by the three methods developed and used in this work, each corresponding to one publication. The coarse spatial scale is related to fully homogenized models. The material is described in a phenomenological approach and the numerous parameters sometimes lack a physical meaning. Resolving the three-phase mesoscopic structure consisting of aggregates, the mortar matrix and the interfaces between them allow to describe similar effects with simpler models. This work addresses two computational challenges related to mesoscale modeling. First, aggregate particles take up a high volume fraction and an efficient particle-packing algorithm is required to generate non-overlapping, random esostructures. Enforcing an additional distance between the aggregates is essential to obtain undistorted meshes for finite element simulations, but further complicates the packing problem. An event-driven molecular-dynamics algorithm is applied to this problem that, in contrast to traditional methods, allows movement and a dense arrangement of the aggregates. This allows creating concrete mesostructures with realistic aggregate volume fractions. The second challenge concerns stability problems in mesoscale simulations of concrete fracture. The geometric complexity and the combination of three material laws for each of the phases leads to numerical instabilities, even for regularized material models. This requires tiny time steps and numerous iterations per time step when integrated with a classic backward Euler scheme. The implicit–explicit (IMPL-EX) integration extrapolates internal variables that account for the nonlinear behavior. This linearizes the equations, provides additional robustness and a computational speedup. In combination with a novel time step control method, a three-dimensional mesoscale compression test is accelerated by a factor of 40, compared to an adaptive backward Euler algorithm. The life time of concrete under cyclic loads is commonly predicted with empirical Wöhler lines. They relate the number of endured cycles with the applied load amplitude and can be included in constitutive formulations. They can, however, hardly be generalized to geometries and load configurations other than the ones tested. On a finer temporal scale, fatigue failure is modeled by the accumulation of damage within each loading cycle. This resolves the whole process of failure, includes stress redistributions and size effects and can easily be extended to multiphysics phenomena. The third computational challenge solved here is the efficient temporal integration that would not be feasible in a naive cycle-by-cycle integration of thousands or millions of cycles. The cost of evaluating a single cycle is reduced by reformulating the problem in the frequency space. It is sufficient to equilibrate the structure once for each Fourier coefficient which significantly speeds up this evaluation. The accumulated damage of one cycle is integrated in time using an adaptive cycle jump concept. For a two dimensional void test structure, the combination of both techniques leads to a 25 times faster simulation compared to the full integration. These three main contributions decrease the numerical cost of mesoscale simulations, allow larger and more detailed models and are a basis to deepen the understanding of the complex failure patterns in concrete.El hormigón es un material complejo y puede ser modelado en varias escalas espaciales y temporales. Mientras que las simulaciones en escalas gruesas son prácticas para aplicaciones de ingeniería, se obtiene una comprensión más profunda del material en escalas más finas. Esto es a costa de un mayor esfuerzo numérico que puede ser reducido por los tres métodos desarrollados y utilizados en este trabajo, cada uno de los cuales corresponde a una publicación. La escala espacial gruesa está relacionada con modelos totalmente homogeneizados. El material se describe con un enfoque fenomenológico y los numerosos parámetros a veces carecen de significado físico. La resolución de la estructura mesoscópica trifásica formada por los áridos, la matriz de mortero y las interfaces entre ellos permite describir efectos similares con modelos más sencillos. Este trabajo aborda dos retos computacionales relacionados con el modelado a mesoescala. En primer lugar, las partículas agregadas absorben una fracción de gran volumen y se requiere un algoritmo eficiente de empaquetamiento de partículas para generar mesoestructuras aleatorias que no se solapen. Hacer cumplir una distancia adicional entre los agregados es esencial para obtener mallas no distorsionadas para simulaciones de elementos finitos, pero complica aún más el problema de empaquetado. A este problema se le aplica un algoritmo de dinámica molecular impulsado por eventos que, a diferencia de los métodos tradicionales, permite el movimiento y una disposición densa de los agregados. Esto permite crear mesoestructuras de hormigón con fracciones de volumen de agregado realistas. El segundo reto se refiere a los problemas de estabilidad en las simulaciones mesoescalares de fracturas de hormigón. La complejidad geométrica y la combinación de tres leyes materiales para cada una de las fases conduce a inestabilidades numéricas, incluso para modelos materiales regularizados. Esto requiere pequeños pasos de tiempo y numerosas iteraciones por paso de tiempo cuando se integra con un esquema clásico de Euler hacia atrás. La integración implícita- explícita (IMPL-EX) extrapola variables internas que dan cuenta del comportamiento no lineal. Esto linealiza las ecuaciones, proporciona robustez adicional y una aceleración computacional. En combinación con un nuevo método de control de paso en el tiempo, una prueba de compresión tridimensional de mesoescala es acelerada por un factor de 40, en comparación con un algoritmo adaptativo de Euler hacia atrás. La vida útil del hormigón bajo cargas cíclicas se predice comúnmente con las líneas empíricas de Wöhler. Relacionan el número de ciclos soportados con la amplitud de carga aplicada y pueden ser incluidos en formulaciones constitutivas. Sin embargo, difícilmente pueden generalizarse a geometrías y configuraciones de carga distintas a las probadas. En una escala temporal más fina, la falla por fatiga es modelada por la acumulación de daño dentro de cada ciclo de carga. Esto resuelve todo el proceso de fracaso, incluye redistribuciones de estrés y efectos de tamaño, y puede extenderse fácilmente a fenómenos multifísicos. El tercer reto computacional resuelto aquí es la integración temporal eficiente que no sería factible en una integración costosa de miles o millones de ciclos ciclo a ciclo. El costo de evaluar un solo ciclo se reduce reformulando el problema en el espacio de frecuencias. Es suficiente equilibrar la estructura una vez para cada coeficiente de Fourier, lo que acelera significativamente esta evaluación. El daño acumulado de un ciclo se integra en el tiempo utilizando un concepto de salto de ciclo adaptativo. Para una estructura de prueba de vacío bidimensional, la combinación de ambas técnicas conduce a una simulación 25 veces más rápida en comparación con la integración completa.Postprint (published version

    Implicit–explicit integration of gradient-enhanced damage models

    Get PDF
    This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/10.1061/%28ASCE%29EM.1943-7889.0001608.Quasi-brittle materials exhibit strain softening. Their modeling requires regularized constitutive formulations to avoid instabilities on the material level. A commonly used model is the implicit gradient-enhanced damage model. For complex geometries, it still shows structural instabilities when integrated with classical backward Euler schemes. An alternative is the implicit–explicit (IMPL-EX) integration scheme. It consists of the extrapolation of internal variables followed by an implicit calculation of the solution fields. The solution procedure for the nonlinear gradient-enhanced damage model is thus transformed into a sequence of problems that are algorithmically linear in every time step. Therefore, they require one single Newton–Raphson iteration per time step to converge. This provides both additional robustness and computational acceleration. The introduced extrapolation error is controlled by adaptive time-stepping schemes. This paper introduced and assessed two novel classes of error control schemes that provide further performance improvements. In a three-dimensional compression test for a mesoscale model of concrete, the presented scheme was about 40 times faster than an adaptive backward Euler time integration.The research was supported by the Federal Institute for Materials Research and Testing, Berlin, Germany and by the German Research Foundation (DFG) under project Un224/7-1. Additionally, the research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 320815 (ERC Advanced Grant Project "Advanced tools for computational design of engineering materials" COMP-DES-MAT).Peer ReviewedPostprint (author's final draft

    Topic Modeling and Text Analysis for Qualitative Policy Research

    Get PDF
    This paper contributes to a critical methodological discussion that has direct ramifications for policy studies: how computational methods can be concretely incorporated into existing processes of textual analysis and interpretation without compromising scientific integrity. We focus on the computational method of topic modeling and investigate how it interacts with two larger families of qualitative methods: content and classification methods characterized by interest in words as communication units and discourse and representation methods characterized by interest in the meaning of communicative acts. Based on analysis of recent academic publications that have used topic modeling for textual analysis, our findings show that different mixed‐method research designs are appropriate when combining topic modeling with the two groups of methods. Our main concluding argument is that topic modeling enables scholars to apply policy theories and concepts to much larger sets of data. That said, the use of computational methods requires genuine understanding of these techniques to obtain substantially meaningful results. We encourage policy scholars to reflect carefully on methodological issues, and offer a simple heuristic to help identify and address critical points when designing a study using topic modeling.Peer reviewe

    Veterinarians' discourses on animals and clients

    Get PDF
    Veterinarians have obligations towards both the animals they treat and their clients, the owners of the animals. With both groups, veterinarians have complicated relations; many times the interests of both groups conflict. In this article, using Q-methodology as a method for discourse analysis, the following question is answered: How do Dutch practicing veterinarians conceptualize animals and their owners and their professional responsibility towards both? The main part of the article contains descriptions of four different discourses on animals and their owners and on veterinarian professional responsibilities that prevail among veterinarians. The factual images veterinarians have of animals and their owners are connected to different moral questions and solutions to these questions. © Springer 2005

    Efficient computational mesoscale modeling of concrete under cyclic loading

    Get PDF
    Concrete is a complex material and can be modeled on various spatial and temporal scales. While simulations on coarse scales are practical for engineering applications, a deeper understanding of the material is gained on finer scales. This is at the cost of an increased numerical effort that can be reduced by the three methods developed and used in this work, each corresponding to one publication. The coarse spatial scale is related to fully homogenized models. The material is described in a phenomenological approach and the numerous parameters sometimes lack a physical meaning. Resolving the three-phase mesoscopic structure consisting of aggregates, the mortar matrix and the interfaces between them allow to describe similar effects with simpler models. This work addresses two computational challenges related to mesoscale modeling. First, aggregate particles take up a high volume fraction and an efficient particle-packing algorithm is required to generate non-overlapping, random esostructures. Enforcing an additional distance between the aggregates is essential to obtain undistorted meshes for finite element simulations, but further complicates the packing problem. An event-driven molecular-dynamics algorithm is applied to this problem that, in contrast to traditional methods, allows movement and a dense arrangement of the aggregates. This allows creating concrete mesostructures with realistic aggregate volume fractions. The second challenge concerns stability problems in mesoscale simulations of concrete fracture. The geometric complexity and the combination of three material laws for each of the phases leads to numerical instabilities, even for regularized material models. This requires tiny time steps and numerous iterations per time step when integrated with a classic backward Euler scheme. The implicit–explicit (IMPL-EX) integration extrapolates internal variables that account for the nonlinear behavior. This linearizes the equations, provides additional robustness and a computational speedup. In combination with a novel time step control method, a three-dimensional mesoscale compression test is accelerated by a factor of 40, compared to an adaptive backward Euler algorithm. The life time of concrete under cyclic loads is commonly predicted with empirical Wöhler lines. They relate the number of endured cycles with the applied load amplitude and can be included in constitutive formulations. They can, however, hardly be generalized to geometries and load configurations other than the ones tested. On a finer temporal scale, fatigue failure is modeled by the accumulation of damage within each loading cycle. This resolves the whole process of failure, includes stress redistributions and size effects and can easily be extended to multiphysics phenomena. The third computational challenge solved here is the efficient temporal integration that would not be feasible in a naive cycle-by-cycle integration of thousands or millions of cycles. The cost of evaluating a single cycle is reduced by reformulating the problem in the frequency space. It is sufficient to equilibrate the structure once for each Fourier coefficient which significantly speeds up this evaluation. The accumulated damage of one cycle is integrated in time using an adaptive cycle jump concept. For a two dimensional void test structure, the combination of both techniques leads to a 25 times faster simulation compared to the full integration. These three main contributions decrease the numerical cost of mesoscale simulations, allow larger and more detailed models and are a basis to deepen the understanding of the complex failure patterns in concrete.El hormigón es un material complejo y puede ser modelado en varias escalas espaciales y temporales. Mientras que las simulaciones en escalas gruesas son prácticas para aplicaciones de ingeniería, se obtiene una comprensión más profunda del material en escalas más finas. Esto es a costa de un mayor esfuerzo numérico que puede ser reducido por los tres métodos desarrollados y utilizados en este trabajo, cada uno de los cuales corresponde a una publicación. La escala espacial gruesa está relacionada con modelos totalmente homogeneizados. El material se describe con un enfoque fenomenológico y los numerosos parámetros a veces carecen de significado físico. La resolución de la estructura mesoscópica trifásica formada por los áridos, la matriz de mortero y las interfaces entre ellos permite describir efectos similares con modelos más sencillos. Este trabajo aborda dos retos computacionales relacionados con el modelado a mesoescala. En primer lugar, las partículas agregadas absorben una fracción de gran volumen y se requiere un algoritmo eficiente de empaquetamiento de partículas para generar mesoestructuras aleatorias que no se solapen. Hacer cumplir una distancia adicional entre los agregados es esencial para obtener mallas no distorsionadas para simulaciones de elementos finitos, pero complica aún más el problema de empaquetado. A este problema se le aplica un algoritmo de dinámica molecular impulsado por eventos que, a diferencia de los métodos tradicionales, permite el movimiento y una disposición densa de los agregados. Esto permite crear mesoestructuras de hormigón con fracciones de volumen de agregado realistas. El segundo reto se refiere a los problemas de estabilidad en las simulaciones mesoescalares de fracturas de hormigón. La complejidad geométrica y la combinación de tres leyes materiales para cada una de las fases conduce a inestabilidades numéricas, incluso para modelos materiales regularizados. Esto requiere pequeños pasos de tiempo y numerosas iteraciones por paso de tiempo cuando se integra con un esquema clásico de Euler hacia atrás. La integración implícita- explícita (IMPL-EX) extrapola variables internas que dan cuenta del comportamiento no lineal. Esto linealiza las ecuaciones, proporciona robustez adicional y una aceleración computacional. En combinación con un nuevo método de control de paso en el tiempo, una prueba de compresión tridimensional de mesoescala es acelerada por un factor de 40, en comparación con un algoritmo adaptativo de Euler hacia atrás. La vida útil del hormigón bajo cargas cíclicas se predice comúnmente con las líneas empíricas de Wöhler. Relacionan el número de ciclos soportados con la amplitud de carga aplicada y pueden ser incluidos en formulaciones constitutivas. Sin embargo, difícilmente pueden generalizarse a geometrías y configuraciones de carga distintas a las probadas. En una escala temporal más fina, la falla por fatiga es modelada por la acumulación de daño dentro de cada ciclo de carga. Esto resuelve todo el proceso de fracaso, incluye redistribuciones de estrés y efectos de tamaño, y puede extenderse fácilmente a fenómenos multifísicos. El tercer reto computacional resuelto aquí es la integración temporal eficiente que no sería factible en una integración costosa de miles o millones de ciclos ciclo a ciclo. El costo de evaluar un solo ciclo se reduce reformulando el problema en el espacio de frecuencias. Es suficiente equilibrar la estructura una vez para cada coeficiente de Fourier, lo que acelera significativamente esta evaluación. El daño acumulado de un ciclo se integra en el tiempo utilizando un concepto de salto de ciclo adaptativo. Para una estructura de prueba de vacío bidimensional, la combinación de ambas técnicas conduce a una simulación 25 veces más rápida en comparación con la integración completa

    Efficient computational mesoscale modeling of concrete under cyclic loading

    No full text
    Concrete is a complex material and can be modeled on various spatial and temporal scales. While simulations on coarse scales are practical for engineering applications, a deeper understanding of the material is gained on finer scales. This is at the cost of an increased numerical effort that can be reduced by the three methods developed and used in this work, each corresponding to one publication. The coarse spatial scale is related to fully homogenized models. The material is described in a phenomenological approach and the numerous parameters sometimes lack a physical meaning. Resolving the three-phase mesoscopic structure consisting of aggregates, the mortar matrix and the interfaces between them allow to describe similar effects with simpler models. This work addresses two computational challenges related to mesoscale modeling. First, aggregate particles take up a high volume fraction and an efficient particle-packing algorithm is required to generate non-overlapping, random esostructures. Enforcing an additional distance between the aggregates is essential to obtain undistorted meshes for finite element simulations, but further complicates the packing problem. An event-driven molecular-dynamics algorithm is applied to this problem that, in contrast to traditional methods, allows movement and a dense arrangement of the aggregates. This allows creating concrete mesostructures with realistic aggregate volume fractions. The second challenge concerns stability problems in mesoscale simulations of concrete fracture. The geometric complexity and the combination of three material laws for each of the phases leads to numerical instabilities, even for regularized material models. This requires tiny time steps and numerous iterations per time step when integrated with a classic backward Euler scheme. The implicit–explicit (IMPL-EX) integration extrapolates internal variables that account for the nonlinear behavior. This linearizes the equations, provides additional robustness and a computational speedup. In combination with a novel time step control method, a three-dimensional mesoscale compression test is accelerated by a factor of 40, compared to an adaptive backward Euler algorithm. The life time of concrete under cyclic loads is commonly predicted with empirical Wöhler lines. They relate the number of endured cycles with the applied load amplitude and can be included in constitutive formulations. They can, however, hardly be generalized to geometries and load configurations other than the ones tested. On a finer temporal scale, fatigue failure is modeled by the accumulation of damage within each loading cycle. This resolves the whole process of failure, includes stress redistributions and size effects and can easily be extended to multiphysics phenomena. The third computational challenge solved here is the efficient temporal integration that would not be feasible in a naive cycle-by-cycle integration of thousands or millions of cycles. The cost of evaluating a single cycle is reduced by reformulating the problem in the frequency space. It is sufficient to equilibrate the structure once for each Fourier coefficient which significantly speeds up this evaluation. The accumulated damage of one cycle is integrated in time using an adaptive cycle jump concept. For a two dimensional void test structure, the combination of both techniques leads to a 25 times faster simulation compared to the full integration. These three main contributions decrease the numerical cost of mesoscale simulations, allow larger and more detailed models and are a basis to deepen the understanding of the complex failure patterns in concrete.El hormigón es un material complejo y puede ser modelado en varias escalas espaciales y temporales. Mientras que las simulaciones en escalas gruesas son prácticas para aplicaciones de ingeniería, se obtiene una comprensión más profunda del material en escalas más finas. Esto es a costa de un mayor esfuerzo numérico que puede ser reducido por los tres métodos desarrollados y utilizados en este trabajo, cada uno de los cuales corresponde a una publicación. La escala espacial gruesa está relacionada con modelos totalmente homogeneizados. El material se describe con un enfoque fenomenológico y los numerosos parámetros a veces carecen de significado físico. La resolución de la estructura mesoscópica trifásica formada por los áridos, la matriz de mortero y las interfaces entre ellos permite describir efectos similares con modelos más sencillos. Este trabajo aborda dos retos computacionales relacionados con el modelado a mesoescala. En primer lugar, las partículas agregadas absorben una fracción de gran volumen y se requiere un algoritmo eficiente de empaquetamiento de partículas para generar mesoestructuras aleatorias que no se solapen. Hacer cumplir una distancia adicional entre los agregados es esencial para obtener mallas no distorsionadas para simulaciones de elementos finitos, pero complica aún más el problema de empaquetado. A este problema se le aplica un algoritmo de dinámica molecular impulsado por eventos que, a diferencia de los métodos tradicionales, permite el movimiento y una disposición densa de los agregados. Esto permite crear mesoestructuras de hormigón con fracciones de volumen de agregado realistas. El segundo reto se refiere a los problemas de estabilidad en las simulaciones mesoescalares de fracturas de hormigón. La complejidad geométrica y la combinación de tres leyes materiales para cada una de las fases conduce a inestabilidades numéricas, incluso para modelos materiales regularizados. Esto requiere pequeños pasos de tiempo y numerosas iteraciones por paso de tiempo cuando se integra con un esquema clásico de Euler hacia atrás. La integración implícita- explícita (IMPL-EX) extrapola variables internas que dan cuenta del comportamiento no lineal. Esto linealiza las ecuaciones, proporciona robustez adicional y una aceleración computacional. En combinación con un nuevo método de control de paso en el tiempo, una prueba de compresión tridimensional de mesoescala es acelerada por un factor de 40, en comparación con un algoritmo adaptativo de Euler hacia atrás. La vida útil del hormigón bajo cargas cíclicas se predice comúnmente con las líneas empíricas de Wöhler. Relacionan el número de ciclos soportados con la amplitud de carga aplicada y pueden ser incluidos en formulaciones constitutivas. Sin embargo, difícilmente pueden generalizarse a geometrías y configuraciones de carga distintas a las probadas. En una escala temporal más fina, la falla por fatiga es modelada por la acumulación de daño dentro de cada ciclo de carga. Esto resuelve todo el proceso de fracaso, incluye redistribuciones de estrés y efectos de tamaño, y puede extenderse fácilmente a fenómenos multifísicos. El tercer reto computacional resuelto aquí es la integración temporal eficiente que no sería factible en una integración costosa de miles o millones de ciclos ciclo a ciclo. El costo de evaluar un solo ciclo se reduce reformulando el problema en el espacio de frecuencias. Es suficiente equilibrar la estructura una vez para cada coeficiente de Fourier, lo que acelera significativamente esta evaluación. El daño acumulado de un ciclo se integra en el tiempo utilizando un concepto de salto de ciclo adaptativo. Para una estructura de prueba de vacío bidimensional, la combinación de ambas técnicas conduce a una simulación 25 veces más rápida en comparación con la integración completa

    Discourses of disability by teacher candidates: A critical discourse analysis of written responses to a disability simulation

    No full text
    Despite the shift from traditional to progressive discourse among disability activists and social science academics, the former remains the dominant discourse of disability. In the present study, we examine how Greek teacher candidates, although being considerably exposed to a progressive discourse during their lectures, represent disability in the context of their disability simulations, which favor traditional discourse. The critical discourse analysis of their written accounts reveals that, in quantitative terms, teacher candidates represent disability by drawing upon both traditional and progressive discourses. Seen qualitatively, however, it appears that progressive discourse is a subjugated discourse, compared with the dominant traditional one. © 2009 Wiley Periodicals, Inc
    corecore